NOTE

The Refractive Index Increment for Poly- α -Methylstyrene at 633 nm in Tetrahydrofuran

N. T. MCMANUS, A. PENLIDIS

Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

Received 20 March 1998; accepted 18 April 1998

Key words: refractive index; α -methylstyrene; poly(α -methyl styrene)

Poly- α -methystyrene (P- α MS), while not as extensively studied as polystyrene, has been the subject of numerous investigations. Different methods of polymerization have been examined, for example, anionic^{1,2} and free radical³ polymerization, and the system has been a model for study of polymerization thermodynamics because of its relatively low ceiling temperature. The physical properties of P- α MS have also been the subject of considerable study; for example, intrinsic viscosities,¹ sedimentation coefficients,⁴ and second virial parameters⁵ have all been evaluated.

A number of previous studies have included determinations of the refractive index increment (dn/dc) for P- α MS in a variety of solvents. Most of the determinations have been made as a necessary adjunct to the assessments of molecular weight averages using light scattering techniques. Values obtained previously are presented in Table I. It is apparent that there is a variation in the value of dn/dc, depending on the solvent used and the wavelength of measurement (it should also be noted that some of the previous studies indicate a variation in dn/dc values with temperature⁵).

At the onset of our study of copolymerization reactions involving α MS, it was noted that the dn/dc value was not available in tetrahydrofuran (THF) for P- α MS at 633 nm. For molecular weight average measurements, our laboratories utilize room temperature (25°C) gel permeation chromatography (GPC) that uses

Journal of Applied Polymer Science, Vol. 70, 1253–1254 (1998) © 1998 John Wiley & Sons, Inc. CCC 0021-8995/98/061253-02

Table I Refractive Index Increments for Poly α-Methylstyrene

Solvent	Wavelength (nm)	dn/dc (ml/g)	Reference
Toluene	?	0.131	2
Benzene	436	0.134	4
Cyclohexane	436	0.200	4
Cyclohexane	436	0.206	5
Benzene	546	0.138	6
Benzene	436	0.124	7
Cyclohexane	436	0.197	7
Toluene	436	0.131	7
Ethylene dichloride	436	0.176	7
Cyclohexane	546	0.192	8
Cyclohexane	436	0.204	8
Cyclohexane	366	0.219	8
Toluene	546	0.126	8
Toluene	436	0.130	8
Toluene	366	0.135	8
Carbon tetrachloride	546	0.168	8
Carbon tetrachloride	436	0.178	8
Carbon tetrachloride	366	0.193	8

THF as the solvent. The detectors within the GPC system are a Dawn multi-angle laser light scattering (MALLS) detector with a He–Ne laser operating at 633 nm in series with a Waters DRI detector. The Astra software package for molecular weight analysis (Wyatt Technology) uses dn/dc values as a key parameter to calculate molecular weights. The variation in dn/dc values for P- α MS with respect to solvent and wave-

Correspondence to: A. Penlidis.

Figure 1 Change of refractive index with concentration for $P-\alpha MS$ (molecular weight = 19,000).

length of measurement meant that none of the previously reported values could be used with any degree of confidence for the measurement of molecular weight averages of αMS containing copolymers.

The dn/dc values of P- α MS standards (Polymer Source, Dorval, Quebec) were measured in THF at 25°C

using a Chromatix KMX-16 laser differential refractometer operating at 633 nm. Linear plots of refractive index changes versus concentration (Fig. 1 shows a typical one) gave values for dn/dc of 0.2044 mL/g (standard error = 0.002273) and 0.2056 mL/g (standard error = 0.001522) for standards with molecular weights of 19,700 and 72,000, respectively.

The authors thank Chris Kostanski of the McMaster Institute for Polymer Production Technology (MIPPT) for help with the Chromatix KMX-16 determinations and ICI, Worldwide, OCMR, and NSERC, Canada, for financial support.

REFERENCES

- D. E. Burge and D. B. Bruss, J. Polym. Sci., A1, 1927 (1963).
- T. Fujimoto, N. Ozaki, and M. Nagasawa, J. Polym. Sci., A3, 2259 (1965).
- 3. G. G. Lowrey, J. Polym. Sci., 31, 187 (1958).
- M. Abe, K. Sahato, T. Kageyama, and M. Fukatsu, Bull. Chem. Soc. Jpn., 41, 2330 (1968).
- T. Kato, K. Miyaso, and M. Nagasawa, J. Phys. Chem., 72, 2161 (1968).
- 6. A. M. Kotliar, J. Polym. Sci., 55, 71 (1961).
- K. Okita, A. Teramoto, K. Kawahara, and H. Fujita, J. Phys. Chem., 72, 278 (1968).
- P. F. Mijnlieff and D. J. Coumou, J. Colloid Interface Sci., 27, 553 (1968).